Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsveyanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
Apricot breeding for resistance to Sharka

V. Bozhkova*, S. Milusheva

Department of Breeding, Genetic Resources and Biotechnology, Fruit-Growing Institute, 12 Ostromila, 4004 Plovdiv, Bulgaria

Abstract. The Sharka disease caused by Plum pox virus (PPV) was found for the first time in Bulgaria more than 80 years ago and it is an endemic disease for our country, as is for all the East European countries. Like all plant viruses, PPV could not be controlled with treatments and that makes breeding of resistant cultivars and rootstocks a significant tool for limiting its spread. The investigation was carried out in the period 2009–2012 in the collection plantations of the Fruit-Growing Institute, Plovdiv in the frames of FP7 project of the EU „Sharka Containment (SharCo)“. The aim set in one of the work packages of the project was to carry out accelerated breeding activities of apricot cultivars resistant to Sharka by using MAS (marker-assisted selection). The hybridization programme included 24 parental combinations with 12,633 pollinated flowers and as a result 1661 hybrid clones (seeds) were obtained. The molecular marker analysis of the leaf samples from 39 hybrid plants obtained from 7 crossings showed that 8 of the hybrids contained a gene for resistance to PPV. Those were plants of the parental combinations ‘Harcoat’x ‘Lito’, ‘Lito’x ‘SEO’ and ‘Harlayne’x ‘Harcoat’. Data showed that all hybrids obtained from crossing of two resistant cultivars (‘Lito’x ‘SEO’) have a gene for resistance. If only one of the parental cultivars is resistant, part of the hybrids have gene for resistance to PPV and in our case it is 50% of all analyzed hybrids.

Keywords: apricot, breeding, sharka, resistance

Abbreviations: PPV – plum pox virus, MAS – marker-assisted selection

Introduction

The Sharka disease caused by Plum pox virus (PPV) was found for the first time in Bulgaria more than 80 years ago and it is an endemic disease for our country, as is for all the East European countries. In West Europe, still there are regions where the disease is not found, however every year the disease is announced to be spreading to new areas. In practice, Sharka was registered on all six continents (Maejima et al., 2010; Thompson et al., 2006). Losses from the disease are very serious in susceptible cultivars. Cambra et al. (2006) mentioned that worldwide losses associated with the management of Sharka had been estimated at over 10,000 million euros over the last 30 years. Like all the plant viruses, PPV could not be controlled with chemicals and that makes breeding of resistant cultivars and rootstocks a significant tool for limiting its spread. The importance of both elements of the tree – the rootstock and the grafted cultivar – comes from the fact that the infection with the virus could occur at each stage of the tree production and growing: during the two years of growing in the nursery, caused by the aphids; in the mother plantation for the production of cuttings or in the orchard when the aphids infect either the scion or the rootstock through the suckers.

There are no data available in literature about an existing source of resistance in Prunus genus – either resistant or immunological one, which could protect the trees from all the virus strains. According to Kegler et al. (1998) the sources of resistance are polygenic, providing from a medium level of resistance to tolerance towards at least one of the virus strains. It means, when using the existing donors, that the individuals obtained will be of different level of inheritance. According to Cooper and Jones (1983) a genetic type is immunogenic when there is no pathogen-host interaction and the virus can never be found in the latter. The authors suggested that the virus is strongly suppressed in the resistant genotypes (low titre of the virus) compared to the susceptible types and the virus could be sporadically found but not always. Tolerant genotypes are infected by the virus but the symptoms expressed are not apparent. Susceptible genotypes are those which are freely infected and the symptoms in the leaves, fruits, wood and flowers are apparent and specific for the pathogen. Sometimes researchers use their own definitions and scales that differ from the definitions mentioned above, which leads to discrepancy of the information, especially as far as resistant cultivars are concerned.

It was established that there are no immunogenic types among the large number of the studied apricot genotypes originating from Europe, Asia and North America. Using developed markers, carriers of genes for PPV resistance have been found out in a number of cultivars, such as ‘Stark Early Orange’, ‘Harlayne’, ‘Lito’, ‘Goldrich’ and NJA2, which was the reason for including those cultivars in modern breeding programmes. Combining classical and molecular methods and techniques in apricot breeding is at an advanced level and the first breeding results have already been obtained.

Materials and methods

The investigation was carried out in the period 2009–2012 in the collection plantations of the Fruit-Growing Institute, Plovdiv within the frames of FP7 project of the EU „Sharka Containment (SharCo)“. The aim set in one of the work packages of the project was to carry out accelerated breeding activities of apricot cultivars resistant to Sharka by using MAS (marker-assisted selection). The sexual hybridization method was applied for obtaining new hybrids. Flowers were castrated and isolated. The pollen of the selected cultivars was collected at the phenological stage of white button and stored in an excipitor at a temperature of 20°C–22°C. The PPV resistant cultivars

*e-mail: vbozhkova@abv.bg
Results and discussion

In the period 2009–2011, a hybridization programme including 24 parental combinations was implemented, aiming at obtaining apricot hybrid populations with increased resistance to Plum pox virus (PPV) and combining good economic and biological characteristics. A total of 12,633 flowers were pollinated and 1,661 hybrid stones (seeds) were obtained. The percentage of the produced seeds out of all the pollinated flowers was 13.1% on average for all combinations. Those data are consistent with the results of other authors, obtained after investigations on other cultivars, under different climatic conditions. In Hungary, Szalay et al. (2000) reported the percentage of the fruit set after open pollination of 6 Romanian cultivars to be varying between 19.9% and 42.9%, while McLaren et al. (1996) mentioned that the problem of pollination had acquired great importance and they found intersterile groups, in which the percentage of the fruit set was below 2%. After conventional stratification, 620 hybrid plants were grown from the hybrid seeds. They were planted in a breeding orchard for evaluation and selection against natural PPV infection background. 323 of them originated from parental combinations consisting of a cultivar well-adapted to the soil and climatic conditions of Plovdiv region and a cultivar that is a carrier of a gene for resistance to the Sharka virus (Table 1).

Table 1. Number of hybrids obtained involving resistant cultivars

<table>
<thead>
<tr>
<th>Parental combinations</th>
<th>Number of plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Harlayne' x 'Harcot'</td>
<td>225</td>
</tr>
<tr>
<td>'Harcot' x 'Stark early orange' (SEO)</td>
<td>23</td>
</tr>
<tr>
<td>'Hungarian best' x 'Harlayne'</td>
<td>2</td>
</tr>
<tr>
<td>'Krupna Skopjanka' x 'Harlayne'</td>
<td>10</td>
</tr>
<tr>
<td>'Lito' x 'Silistrenska kompotna'</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>323</td>
</tr>
</tbody>
</table>

The average percentage of the obtained plants out of all the stratified seeds was 37.3%. It is quite low compared to studies by other authors. Polat (2007) achieved values of up to 50–80% under controlled conditions. Similar results were reported by Bassi et al. (1998). The authors underlined that the conditions during stratification were very important for achieving a higher percentage of seed germination. In most cases special treatments with chemical reagents were applied with the aim of increasing that percentage. In the present study such reagents were not used but it was established that germination was different for the different cultivars. The seeds of 'Lito' and 'Harlayne' showed a better germination rate, reaching up to 60% in some years, which makes them suitable to be used as a mother parent.

During the first vegetation period, symptoms of virus infection were not detected in the leaves of the planted hybrids. Observations will continue for selecting elites that would be subjected to biological tests with our isolates of the PPV, strain M. Hybrids showing good results after the biological test will be evaluated for their biological and economic characteristics after reaching the fruit-bearing stage. Thus, the breeding process is expected to be shortened.

The biological test carried out with 38 hybrid plants inoculated with a PPV isolate, showed that during the first vegetation cycle disease symptoms in the leaves were not observed in any of the studied hybrid plants but the virus was detected in 4 plants by the ELISA test (Table 2).

The molecular marker analysis of the leaf samples from 38 hybrid plants obtained from 7 crossings showed that 8 of the hybrids

Table 2. Results from application of phenotyping and MAS (2011–2012)

<table>
<thead>
<tr>
<th>Hybrid combination</th>
<th>PPV symptoms on leaves</th>
<th>Number of tested plants for PPV</th>
<th>Number of positive ELISA samples</th>
<th>Number of tested plants</th>
<th>Number of plants with gene of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Harcot' x 'Roxana'</td>
<td>no</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>'Harcot' x 'Lito'</td>
<td>no</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>'Harcot' x 'Krupna Skopjanka'</td>
<td>no</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>'Lito' x 'SEO'</td>
<td>no</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>'Harlayne' x 'Harcot'</td>
<td>no</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>'Hungarian best' x 'Krupna Skopjanka'</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>'Krupna Skopjanka' x 'Hungarian best'</td>
<td>no</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>'Krupna Skopjanka' x 'Harcot'</td>
<td>no</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38</td>
<td>4</td>
<td>53</td>
<td>8</td>
</tr>
</tbody>
</table>
contained a gene for resistance to the Sharka virus. Those were plants of the parental combinations 'Harcot' x 'Lito', 'Lito' x 'SEO' and 'Harlayne' x 'Harcot'. Data showed that all the hybrids obtained from crossing of two resistant cultivars ('Lito' x 'SEO') have a gene for resistance to PPV.

In the other two combinations, in which only one of the parents is resistant, the following results were established: four out of nine hybrid plants from the crossing 'Harcot' x 'Lito' contained a gene for resistance to the Sharka virus and such a gene was detected in two out of the three plants of the crossing 'Harlayne' x 'Harcot'. None of the hybrids obtained from the crossing of two tolerant cultivars ('Harcot' x 'Roxana') contained a gene for resistance.

The eight hybrids with a detected gene of resistance to PPV are going to be propagated in 2013 and in the next 5-6 years their economic and biological characteristics will begin to be evaluated with the aim of identifying an elite or a new cultivar. Thus, applying MAS (marker assisted selection) will enable the shortening of the breeding cycle twice.

The results obtained clearly confirmed that despite cultivar plasticity to the specific soil and climatic conditions and their habits against natural infection background, apricot breeding for resistance to Plum pox virus should continue, using in the parental combination at least one cultivar carrying the gene for resistance.

Conclusion

After carrying out molecular studies, it was established that hybrids containing a gene for resistance could be obtained only if at least one of the parental cultivar is a carrier of such a gene. A rich hybrid apricot fund has been developed with the participation of cultivars that are donors of resistance to Sharka, which is a prerequisite for breeding a series of resistant hybrids.

Acknowledgements

This investigation is funded by FP7 project “SharCo” №204429.

The authors are in debt with Veronique Decroq from INRA, Bordeaux, France and Maria Badenes from IVIA, Valencia, Spain for the molecular analyses.

References

Review

Fibromelanosis in domestic chickens
H. Lukano, A. Genchev

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoilova, Hr. Meluca

Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage
P. Chamurlyisky, N. Tsenov, S. Stoyanova

Breeding evaluation of newly stabilized lines of maize
V. Valkova

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva

Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop
A. Ivanova, N. Tsenov

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov

Rumen fermentation in yearling rams fed different rations
V. Radev

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov
CONTENTS

Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against \textit{Tuta absoluta} (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of \textit{Pellic Vertisol} (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow's milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in \textit{Bombyx mori} L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva

AGRICULTURAL SCIENCE AND TECHNOLOGY, VOL. 5, No 3, 2013
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader. Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions should't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Бг, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Мө, Greek = Gr, Georgian = Гео, Japanese = Яп, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:
Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:
Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

journal